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PROGRESS METERS IN PARALLEL
COMPUTING

TECHNICAL FIELD

Embodiments generally relate to progress meters. More
particularly, embodiments relate to progress meters in par-
allel computing.

BACKGROUND

Computer architectures have grown in complexity from
architectures using a single processor to architectures using
parallel processors. In addition, High Performance Comput-
ing (HPC) may utilize processor groups to handle tasks
according to various computational topologies and architec-
tures. For example, an HPC application or job may be
divided into various tasks that may be subdivided into
groups of related subtasks, commonly referred to as threads,
which may be run in parallel on a computational resource.
In some architectures, related threads may be processed in
parallel and completion of a task may require the completion
of all related parallel threads that make up the task.

Computational efficiency may be enhanced by allowing
parallel threads to be completed and/or to reach a milestone
(e.g., a synchronization point, a global synchronization
barrier, or more simply, a barrier) before progressing for
further processing (if not already totally completed). Gen-
erally, individual threads may perform independent compu-
tations before they reach a synchronization point. The
threads may complete their work at different times, however,
due to variability of computational work among various
kinds of tasks, differences that may arise in computational
conditions, and so on. Thus, there may be a load imbalance
among the computational resources employed, with some
threads waiting for other threads to complete. The load
imbalance may lead to inefficiencies in performance and
power utilization, since computational resources may be idle
while waiting for remaining tasks to be completed.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the embodiments will become
apparent to one skilled in the art by reading the following
specification and appended claims, and by referencing the
following drawings, in which:

FIG. 1 is a schematic diagram of an example of variations
generated in parallel processing of a group of threads;

FIG. 2 is a schematic diagram of an example of a time-line
to process a thread according to an embodiment;

FIG. 3 is a flowchart of an example of a method of using
progress meters according to an embodiment;

FIG. 4 is a flowchart of an example of a method of using
progress meters in software according to an embodiment;

FIG. 5 is a block diagram of an example of a system to use
progress meters according to an embodiment;

FIG. 6 is a flowchart of an example of a method of using
progress meters to vary performance of a core according to
an embodiment; and

FIGS. 7A-7B are schematic diagrams of examples of
variations generated in parallel processing of a group of
threads according to an embodiment;

FIG. 8 is a block diagram of an example of a system to use
progress meters at a node level according to an embodiment.

DETAILED DESCRIPTION

Computational resources may be considered, and/or
grouped together, in a variety of different levels, according
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2

to a number of different taxonomies, and so on. For example,
there may be a single processor having a single core at an
atomic level. Above the atomic level, there may be proces-
sors including multiple cores. A node may refer to an
individual computer including at least one processor and a
network connection, and/or multiple processors each includ-
ing multiple cores. In one example, a node may include 16
multi-core processors. At a higher level, a group of nodes
may be grouped together. For example, two or more nodes
may be arranged in a cabinet (e.g., a rack), wherein two or
more cabinets may be arranged in rows of cabinets. In
addition, groups between approximately 1,000 to 10,000
(and more) nodes may be connected together to form an
individual cluster, wherein clusters may be connected to
other clusters, and wherein groups of clusters may form
grids.

In HPC, nodes that comprise an individual cluster and/or
a plurality of clusters may be co-located in a common
facility. Generally, a common facility may be served by a
common power system. Clusters and/or nodes that are
co-located together in a common facility may be connected
to one another by a relatively low latency, high bandwidth
fabric. In addition, communications among remote clusters
and/or nodes may be accomplished using a network having
relatively higher latency and substantially lower bandwidth
(e.g., the Internet). Moreover, an HPC system may be
homogenous. For example, hardware that comprises nodes
may be built to a common specification. Also, nodes of an
HPC system may share a common file system

Each level (e.g., core, processor, node, cabinet, cluster,
grid, etc.) may refer to a computational resource. In parallel
processing, multiple computational resources may be used
in a solution of a problem. Although portions of the follow-
ing discussion may include cores for illustration, embodi-
ments presented herein may utilize computer resources at a
variety of levels (computational resources), including pro-
cessors, nodes, cabinets, clusters, grids, etc., or any combi-
nation thereof

Generally in HPC, an application may refer to a “job” and
a job may include a number of tasks that may be broken
down into individual subtasks, which may be referred to as
“threads.” In parallel computing, a task may be broken down
into a related group of independent threads that may be ran
concurrently in parallel with one another, wherein each
thread may run on a separate core within a node. The threads
that collectively make up a given task may run on the cores
or processors within a given node. The threads of a given
task may run on multiple processors within a node when, for
example, the processors share the same coherent memory
space. In addition, the threads of more than one task may be
ran on a given node based on, for example, a number of
microprocessors and/or cores in the node, a workflow being
presented, and so on. Additional architectures may permit
variations. For example, in some variants, multiple threads
may share a common core through various forms of multi-
plexing.

In parallel processing, code that is to be processed in a
parallel fashion may break into individual instances (copies)
of itself. Instances may refer to a “rank” in one form of
parallel processing that uses a programming model based on
a communication library and a runtime called Message
Passing Interface (MPI).

A thread may represent a series of work assigned to the
thread, or simply “work.” Generally, a first set of work
undertaken in a thread may need to be completed before
remaining work in a thread may begin. The work undertaken
by a parallel group of threads within a task may be com-
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pleted when all of the threads in the parallel group of threads
have reached a common milestone in terms of the work that
the group has completed. Commonly, it may not be desirable
for a new task to commence before the processing of a
previous task, of relevance to the new task, has completed.
One approach to preventing such a situation from arising is
to provide a barrier for the individual parallel threads to
reach, wherein the parallel threads have each completed a
certain defined amount of work allotted to them at the point
represented by the barrier. In this regard, the threads may be
in a state of synchronicity with one another. Barriers may be
scheduled in time (e.g., occurring with a particular fre-
quency) and/or may be event-based, occurring when the
threads complete some amount of work that is computed and
assigned at initialization and/or when a previous barrier was
reached. The provision of barriers may refer to barrier
synchronization, and the barrier may refer to a synchroni-
zation barrier, or simply, a “barrier.”

Parallel processing may utilize synchronization barriers
as global barriers, at which all related threads pause until
each of the threads (e.g., processing each on its respective
core) have completed the work that has been assigned to
each of the threads. Again, and depending on the architec-
ture, global barriers may be time-based and/or may be
event-based.

Ideally, all threads would arrive at a given barrier (e.g., a
global barrier) at the same time. Generally, threads that make
up a task may take different times to complete, even when
the computational resources employed appear to be identical
(e.g., when cores have been designed to a common speci-
fication), and even when the problem has been broken down
in what appears to be equal sized portions (e.g., in a large
sort, wherein each node may be given a fixed, equal fraction
of the data to sort). There may be a number of causes for
such variations. Commonly, the causes may be characterized
as being “static” or they may be characterized as being
“dynamic.” In the static case, the cause may be more or less
invariant over time, whereas some variability in an operating
characteristic arises over time in the dynamic case.

One source of static variability may include as-manufac-
tured variability of hardware. Even though every processor
may nominally be identical to every other processor, manu-
facturing processes may admit some variation in processor
qualities, such as processor frequency, speed, and so on.

Examples of dynamic sources of variability include Input/
Output (I/0) interrupts from the Operating System (OS),
which may slow down a processor. Wake up times, for
example due to I/O calls, may vary over time as well, as may
a frequency and/or a moment at which a node may be
interrupted by an OS. Memory accesses that are made by
tasks executing on processors may require varying amounts
of time to service, depending on the task. Additional sources
of variability may include jitter effects, for example, from
the OS interrupting threads on one core and/or processor
differently than other threads to perform OS duties such as,
e.g., updating a clock, running system software to support an
application, and so on. Another dynamic source of variabil-
ity may be from recoverable hardware errors occurring
differently from one node to another node.

Still other sources of variability may be from the nature of
a job being processed. For example, task may not divide
evenly among resources, either at the software level, or in
terms of allocation of hardware (e.g. processors, nodes, etc.)
to the job and/or tasks.

Whatever the sources of variability, addressing variability
consequences may require that cores tasked with processing
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a related set of threads wait at periodically placed global
synchronization barriers (or simply “barriers”).

Turning now to FIG. 1, an example of waiting times that
may occur between a first global synchronization barrier 12
and a subsequent global synchronization barrier 14 is
shown. A series of threads T1, T2, T3 . .., Tn (T1 to Tn),
which may correspond to a set of related subtasks of a task,
begin to be processed at an initial time t, marked on a time
scale 10. The length of bars representing each of the threads
T1 to Tn corresponds to a duration during which the threads
may undergo processing by their respective cores and/or
processors within a given node. For example, the thread T1
may include an active period of processing and/or running
time 16, followed by a waiting time 18 during which its core
waits for the other threads T2, T3, . . . Tn that are processing
in other cores to complete their assigned work and thereby
catch up to the thread T1.

Each of the threads T1 to Tn may be referred to as active
when undergoing processing on its respective core for a
respective period of running time 16 as the work allotted to
the threads T1 to Tn is accomplished. It should be under-
stood that active periods, i.e., respective periods of running
times 16 associated with each of the n threads, may vary
with respect to one another. In FIG. 1, the thread T1 takes the
least amount of time to complete (e.g., finish) and the thread
T3 taking the longest amount of time to complete (e.g.,
finish).

A global synchronization barrier 14 may be provided,
wherein further processing of threads on cores may be held
back (e.g., paused) until the slowest of the threads has
completed processing on its respective core. As discussed
above, the synchronization barrier may be event-based,
and/or it may be time-based. In addition, a spacing of
barriers may be fixed and/or may vary. Moreover, barriers
may arise throughout the life of a thread. In addition,
variation in running times 16 may result in variations in
waiting times 18 for each of the cores, during which some
threads may be idle and/or their respective cores may not be
processing threads. Thus, waiting times may entail idling,
which may be wasteful of hardware resources.

It may be possible to reduce the total waiting times by
reallocating computational resources (e.g. a number of
cores, processors, nodes, etc., at work on a task). In some
embodiments, waiting times at a core level may be reduced
overall by speeding up slower cores while slowing down
faster cores to allow threads and/or cores to arrive at a global
synchronization barrier in relatively less mean time. In one
embodiment, speed control over a core may include chang-
ing an operating frequency of cores, wherein the operating
frequency may determine the speed of the core in processing
threads under some circumstances and under some metrics.
Core frequency may scale with an amount of power pro-
vided to the core. In addition, power may scale with a square
of the voltage supplied to the core.

In one embodiment, scaling may be leveraged by obtain-
ing information concerning a speed with which threads
complete their work before the threads’ next global syn-
chronization barrier, and using that information to affect the
speed of the cores by adjusting an amount of power provided
to the cores. Although the use of scaling is discussed with
respect to a core as a computational resource, a similar
approach may be undertaken with respect to aggregates of
cores, processors, nodes, cabinets, clusters, grids, etc., to
allow aggregates of cores to run relatively more efficiently
in terms of power and/or time.

Information concerning a speed with which threads may
complete their work may be provided by a series of progress
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meters. In some embodiments, progress meters may be
provided as part of the code that is run on the cores. The
progress meters may compute an amount of work that a
thread is to complete before a next synchronization global
barrier. Then, at intervals thereafter (either periodic or not),
the progress meters may compute an amount of work
remaining until the next global synchronization barrier is
reached. Information on the progress of threads may be
subsequently used to control a frequency (e.g., speed) of
cores and/or an allocation of computer resources.

FIG. 2 shows an example of an embodiment in which a
progress meter may be used to track progress of a single
thread executing on a single core. At a time Ts1, a first global
synchronization barrier 21 marks a start of processing and a
thread globally synchronizes with other related threads
across respective cores of the threads. In one example, the
processing begins with a serial code region 22 in which
threads may be processed serially. At time 24, the thread
arrives at a parallel code region 28, at which point a progress
meter (which may be imbedded into the parallel code)
computes the total work to be done in processing the thread
from start to completion prior to reaching a next global
synchronization barrier. Although FIG. 2 depicts a serial
code region 22 preceding a parallel code region 28, in other
embodiments the serial code region 22 may follow or be
interleaved with the parallel code region 28. Indeed, there
may be multiple serial and parallel code regions between
barriers.

At subsequent times 30, the progress meter computes a
percent of total work remaining and/or completed at the
particular point in time (i.e., a “work fraction”) and shares
the work fraction with other system assets, discussed below.
At time Ts2, a second synchronization barrier 31 may be
provided, followed by a serial code region 32. A new
calculation of an amount of work to be done may occur at
time 34 for further processing of the thread (e.g., if the
thread has not already completely completed or been dis-
carded) as the thread enters the next parallel code region 38.
At subsequent times 40, a percent of total work remaining
and/or completed at the particular point in time (i.e., the
work fraction) may again be calculated, and the work
fraction may be shared with other system assets, discussed
below. In addition, the thread continues and reaches a next
synchronization barrier 41 at time Ts3. The process repeats
for each thread in a group of threads until the overall job
represented by the group of threads has been completed.

Turning now to FIG. 3, a flowchart of an example of a
method 50 in which progress meters in software may be used
to track a completion of a thread in a node is shown
according to an embodiment. The method 50 may be imple-
mented as a set of logic instructions stored in a machine- or
computer-readable storage medium such as random access
memory (RAM), read only memory (ROM), programmable
ROM (PROM), flash memory, etc., in configurable logic
such as programmable logic arrays (PLAs), field program-
mable gate arrays (FPGAs), complex programmable logic
devices (CPLDs), in fixed-functionality logic hardware
using circuit technology such as application specific inte-
grated circuit (ASIC), CMOS or transistor-transistor logic
(TTL) technology, or any combination thereof. For example,
computer program code to carry out operations shown in the
method 50 may be written in any combination of one or
more programming languages, including an object oriented
programming language such as C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
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6

Moreover, the method 50 may be implemented using any of
the herein mentioned circuit technologies.

A job may start at block 52. At illustrated processing
block 54, a core and the core’s attendant thread may be
globally synchronized with respect to other related threads
and cores, giving the threads a common starting time. After
executing any serial code that may be present, the thread
encounters a parallel code region at illustrated processing
block 56. At illustrated processing block 58, a progress
meter calculates an amount of work that is to be processed
before the thread encounters a barrier. At illustrated pro-
cessing block 60, the code may be executed, for some period
at the end of which illustrated processing block 62 computes
how much work, either in absolute terms or as a fractional
representation thereof (e.g., as a percentage), remains to be
done on the thread. Information regarding remaining work is
shared with a monitor Application Processing Interface
(API) at illustrated processing block 64. Block 65 deter-
mines if the thread has completed (i.e., if all of the work to
be done in the thread has been done). If the work has not
been completed, then control passes back to the processing
block 60, wherein additional processing occurs. If the block
65 determines that the work has completed, then illustrated
processing block 66 determines if the overall job has been
completed. If so, then the process ends at block 68. On the
other hand, if there are additional threads for the core to
process, then control passes back to the processing block 54
for another synchronization.

Progress meters offer a possibility of providing multiple
evaluations of work remaining in a thread, and thus offer
information that may be utilized to alter work flow in
approaches that are relatively more efficient users of
resources, including time and computational resources. Jobs
may then be completed relatively sooner than in conven-
tional approaches.

Progress meters may be implemented in software. In one
embodiment, the implementation may be as a software
probe that may be inserted into existing code. Such a probe
may be referred to as a call statement which when encoun-
tered calculates work to be done in processing a thread on its
initial encounter, and then calculates a fraction of that work
remaining to be done for the thread in subsequent encoun-
ters.

FIG. 4 shows an example 70 of an embodiment of a
software implementation of a progress meter, which illus-
trates an annotation of pre-existing code with a progress
meter. In the example 70, the pre-existing code that begins
at block 72 is a simple loop. At illustrated processing block
74, the software may be passed a parameter indicating that
it is to be executed J times. A variable K may be employed
as a counter for tracking the number of passes through the
code, and initialized to an integer 1 at illustrated processing
block 76. The code may be executed at illustrated processing
block 78, and the variable K may be incremented at illus-
trated processing block 80. Block 82 determines if K=J. [f K
does not equal J, then control loops back to the processing
block 78. If the block 82 determines that K=J, then the code
may finish running at illustrated processing block 84.

A progress meter 86 may be provided in the form of an
API that may be inserted into or in parallel with existing
code as in FIG. 4. The progress meter 86 may be passed the
value of J and it may track the number of loops that have
been made and/or are yet to be made through the code.
Access to the code that is to be executed, along with both the
number of iterations through the code that have been made
(e.g., K) and the number of iterations that are to be made
(e.g., J) may provide a measure of progress made at a level
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of each iteration through the loop. For example, if J=10, then
when K=1 it may be determined that 10% of work on a
thread has been completed. In another example when K =8,
it may be determined that 80% of work has been completed.
Alternatively, these numbers may be expressed as percent-
age of work that remains to be completed (e.g., in the first
example, 90% of the work remains to be done, and in the
second example, 20% of the work remains to be done). The
progress meter 86 may pass numbers indicating the amount
of work completed and/or to be completed to a runtime
monitor API, discussed below, to affect the processing of the
threads.

In other embodiments, a progress meter may determine
total work and/or percent work completed automatically
through dynamic code profiling and/or analysis of processor
performance counters. In addition, an application may not
pass other information to a progress meter.

A progress meter may compute work and/or work per-
centages either on a time-based scale (i.e., having a certain
number of occurrences/unit time, or frequency), or the
progress meter may be event based (e.g., making a compu-
tation each time through a loop regardless of time, such as
is the case in the example in FIG. 4, discussed above. In one
embodiment, a progress meter may update approximately
once every 10 micro-seconds. Faster updating may be
employed. If updates are computed relatively frequently, and
the progress meter is inserted into the application code
serially (and not in parallel with it), overhead and/or appli-
cation performance may be balanced and/or considered.

Turning now to FIG. 5, a block diagram of an example of
a system to utilize progress meters is shown according to an
embodiment. In one example, computational resources may
include cores. For example, a group of cores may be
provided including a first core 87 and an Nth core 88. Each
of the cores 87 . . . 88 may run a thread 90-1 . . . 90-N that
may be an instance of parallel code, which may be identical
from core to core. Each core 87 . . . 88 may be provided with
a progress meter 92. In one example, the progress meters 92
of each of the cores 87 . . . 88 may notify a runtime monitor
94 (which may itself be an API) of the progress being made
on a thread via explicit function calls. Alternatively, the
progress meters 92 of each of the cores 87 . . . 88 may update
progress values that may be queried by the runtime monitor
94. The runtime monitor 94 may be a part of the OS, a
stand-alone program, or a part of a relatively comprehensive
performance/power optimization framework that combines
multiple optimization techniques.

At a first global synchronization point, the progress
meters 92 of each of the cores 87 . . . 88 report the total
amount and/or percentage of work that is to be completed
with respect to a given thread from start to completion.
Then, at subsequent intervals, the progress meters 92 of each
of the cores 87 . . . 88 report a fraction of work remaining
(and/or already completed—the work fraction). The runtime
monitor 94 forwards the work fraction to a performance
balancer 96, which may use the information provided by the
progress meters 92 to modify a frequency of each of the
cores 87 . . . 88, and/or otherwise affect an allocation of
resources applied at the core level.

The information provided by the progress meters 92 of
each ofthe cores 87 . . . 88 may be used in a number of ways.
In the event that a thread traverses a given core at a slower
speed than other threads are traversing respective cores, the
slower core may be sped up and/or the faster core slowed
down by varying respective frequencies of the cores. One
way to affect such control is by reallocating power from the
faster cores to the slower cores. Similarly, adjustments to the
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power supplied to cores or other adjustments to the cores
that affect their operating frequency, may, in the aggregate,
also modify the speed of their respective nodes and aggre-
gates of nodes.

Thus, core (and/or processor) frequency may be varied
over a range by altering the amount of power that may be fed
to the core (and/or processor). In a situation where power
resources may be limited, faster thread processing times may
be obtained by shifting power away from cores that are
faster than the average of the cores employed, and toward
cores that are slower than the average of the cores employed.
In some circumstances, it may be advantageous to redirect
power away from cores that are slower than average to other
cores that are even slower. Progress meters provide data that
may be used to regularly adjust power to cores, thereby
relatively reducing waiting times at synchronization points.
In some embodiments, power shifting may also reduce
power consumed in the course of processing a given job.

FIG. 6 shows a flowchart of an example of a method 100
of utilizing information provided by progress meters to
control the flow of power among the cores in a node. The
method 100 may be implemented as a set of logic instruc-
tions stored in a machine- or computer-readable storage
medium such as random access memory (RAM), read only
memory (ROM), programmable ROM (PROM), flash
memory, etc., in configurable logic such as programmable
logic arrays (PLAs), field programmable gate arrays (FP-
GAs), complex programmable logic devices (CPLDs), in
fixed-functionality logic hardware using circuit technology
such as application specific integrated circuit (ASIC),
CMOS or transistor-transistor logic (TTL) technology, or
any combination thereof. For example, computer program
code to carry out operations shown in the method 100 may
be written in any combination of one or more programming
languages, including an object oriented programming lan-
guage such as C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. Moreover, the
method 100 may be implemented using any of the herein
mentioned circuit technologies.

Tustrated processing block 102 may collect data from
progress meters regarding an amount of work remaining to
be performed on related threads at respective cores of the
related threads. The data may be stored in vector or matrix
form. It may be desired to increase an amount of data
collected. Thus, block 104 determines if enough data has
been collected. If not, control passes back to the processing
block 102. If so, then illustrated processing block 106
calculates numbers provided by the progress meters across
the cores. One useful measure may include a skew of the
samples collected, where the skew may refer to a variance
of the core progress (as determined in the samples) divided
by their mean.

When the skew lies within some limit, the operation of the
cores may be determined to be efficient in terms of time
and/or power resources employed. Thus, block 108 deter-
mines if the skew may be within a bound. If so, control loops
back to the processing block 102 for another round of data
collection. If the skew is outside of a bound set by the limit,
then a median of the samples for the cores may be computed
at illustrated processing block 110, and the cores may be
sorted about the median (e.g., from high to low) at illustrated
processing block 112.

Tustrated processing block 114 arranges the cores in
pairs, beginning with the fastest core being paired to the
slowest core, continuing with the second fastest core being
paired to the second slowest core, and so on in round-robin
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fashion until all cores and/or all cores lying outside of some
predetermined band are accounted for. [llustrated processing
block 116 steers power within each pair of cores from the
faster of the two cores to the slower of the two cores. Such
power shifting may slow down the faster cores (e.g., in the
pairs) by reducing the operating frequency of the faster cores
(e.g., in the pairs), and/or may speed up the slower cores
(e.g., in the pairs) by increasing the operating frequency of
the slower cores (e.g., in the pairs).

Advantageously, the overall speed with which a parallel
processing job is to be completed may be relatively
increased. In addition, total amount of power necessary to
complete the job may be relatively reduced. Moreover,
facilities that house HPC systems generally may require
substantial air cooling to account for heat generated at the
cores of an HPC system. Thus, reducing the relative power
consumed by the cores may result in less heat generated at
the cores, which may allow relatively less intensive use of
air conditioning systems in HPC facilities to provide addi-
tional further power savings.

In an alternative embodiment, the processing block 114
may omitted, and the slowest frequency cores may be
boosted at illustrated processing block 116 by, for example,
directing that they receive more power, which may be
accompanied by reductions in the amount of power provided
to the faster cores.

The processing blocks may be implemented in the various
combinations of hardware and/or software elements noted
above. Thus, in one embodiment processing block 106 may
be implemented in hardware and/or software, and may
include a skew calculator to compute a skew. It will be
appreciated that other implementations of the method are
possible.

Turning now to FIGS. 7A-7B, several effects of data
provided by progress meters to control computational
resources, such as cores, is shown according to an embodi-
ment. In one example, core frequencies may be varied (such
as by varying the power supplied to the cores). FIG. 7A is
similar to FIG. 1, discussed above, and shows a time interval
along a timeline 120 between an initialization 122 of a group
of threads T1, T2, T3, . . . Tn at a time to and a time t,, at
which a subsequent synchronization barrier 124 may be
encountered.

Each of the threads T1, T2, T3, . . . Tn may have a
respective active running time 126 during which work
occurs, and may have a respective waiting time 128 during
which work on a thread has completed, and during which the
thread and/or the core on which the threads run awaits other
threads to complete work on the other threads’ respective
cores. In the illustrated example, the waiting times of the
threads T1, T2, T3, . . . Tn are indicated as WTI,
WT2, WT3 . . . WTn, respectively. Some of the waiting
times may be 0, and in general some of the waiting times
may be longer than others. The sum of the waiting times may
be given as:

W ooiar= W+ W2+ W3+ WTn

total

FIG. 7B shows a situation in which one of the embodi-
ments discussed herein is employed to vary a frequency of
individual cores, speeding up those that are relatively slow
and/or slowing down those that are relatively fast. A time
interval is shown along a timeline 130 between an initial-
ization 132 of a group of threads T'1, T'2, T'3 . . . T'n at time
t'y and a time t',, at which a subsequent synchronization
barrier 134 may be encountered. Each of the threads T'1, T'2,
T3 . . . T'n may have an active running time 136 during
which work occurs, and may have a waiting time 138 during
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which work on a thread has completed, and during which the
thread and/or the core on which the threads run awaits other
threads to complete work on the other threads’ respective
cores. In the illustrated example, the waiting times of the
threads T'1, T'2, T'3 . . . T'n are indicated as WT'1, WT'2,
WT'3 ... WT'n, respectively. Some of the waiting times may
be 0, and in general some of the waiting times may be longer
than others. The sum of the waiting times may be given as:

W sad= WIS WIT2+ W34+ WTn

total

It may be noted that the effect of utilization of progress
meters may be to permit a synchronization barrier 134 to be
encountered sooner than would be the case as depicted in
FIG. 7A. For example:

(ty=10)> (110
Moreover, the total of the waiting times may be relatively
reduced when using data provided by the progress meters:

g
I/Vtotal > W total

Reductions in waiting times may permit a shortening of
intervals between global barriers and may make relatively
more efficient use of computational resources in terms of
time and/or power used in completing jobs.

Although examples of embodiments set forth here have
been presented in terms of cores as the basic unit of
computational resource, embodiments may also be applied
to other levels of computational resource, including proces-
sors, multi-core processors, racks of nodes, cabinets, clus-
ters, grids, and so on. Embodiments at levels above the core,
such as nodes, may include aggregating data from the cores
of related threads running on a given node.

FIG. 8 shows a block diagram of an example of a system
to use progress meters at a node level (e.g., computational
resources are nodes). A group of nodes may be provided
including a first node at 186 and an Nth node 188. Each of
the nodes 186 . . . 188 may run one or more tasks 190 that
may be instances of parallel code, which may be identical
for a related group of tasks running within a given node. As
before, each task may include a number of related threads,
each of which may run on a single core. Each node may
include a number of cores on which a number of threads are
being processed, each of which may be provided with a
progress meter 192 that may report to a runtime monitor 194
(which may be an API) at various times. Thus, embodiments
may include aggregations of cores, e.g., nodes.

At the level of nodes, the progress meters 192 of each of
the nodes 186 . . . 188 may provide statistical measures
based on aggregates for the various threads and/or tasks that
are executing in the respective nodes 186 . . . 188. For
example, the progress meters 192 of each of the nodes
186 . . . 188 may report an average work completed and/or
to be completed across cores in a given node. In another
example, the progress meters 192 of each of the nodes
186 . . . 188 may report a number to indicate the least amount
of work completed in any one of the cores in a node.

Other statistical measures (e.g., median, variance, stan-
dard deviation, skew etc.) of core performance within a
given node may be also reported. At subsequent intervals
based on time and/or event, the progress meters 192 of each
of the nodes 186 . . . 188 may continue to report statistics
derived from work completed and/or work assigned to the
computational resources (e.g., cores) within each of the
respective nodes 186 . . . 188. The runtime monitor 194
forwards the information to a performance balancer 196,
which may use the information provided by the progress
meters 192 of each of the nodes 186 . . . 188 to modify the
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allocation of resources applied to the nodes. Additionally,
the performance balancer may aggregate the per-thread
progress meter information provided regarding individual
threads to determine overall node progress.

Adjustment of node power, which may be used to alter
node speed, may be accomplished through a variety of
mechanisms. For example, a processor may be equipped
with software-exposed power capping and monitoring inter-
faces that a runtime system configures to adjust processor
power.

At still higher levels, where it is desired to track progress
of individual cabinets, clusters, and/or grids, basic informa-
tion concerning work progress may continue to be based on
per-thread data provided at the core level by the progress
meters, discussed above. As one moves to higher levels of
computational resource, progress meter data may be pro-
gressively aggregated, level by level. For example, when
evaluating the speed of nodes, one may consider the slowest
thread on any core within a given node, and may use that as
a proxy for the speed of the node. Similarly, when consid-
ering the progress of aggregations of nodes (e.g., in clus-
ters), one may further aggregate node data by considering
the slowest node in a cluster as a proxy for the speed of that
cluster. The speed of the slower computational resources
(node, cluster, etc.) may then be modified by speeding up the
slower performing computational resources, possibly while
also slowing down the faster performing computational
resources. One way of affecting speed may be by providing
more power to slower resources.

In an additional embodiment, the process times for rela-
tively slow processing threads may be decreased by provid-
ing the relatively slower threads with additional resources,
such as by further dividing the work of a thread and then
parceling out the divided thread to additional cores.

Embodiments disclosed herein may mitigate the problem
of load imbalance and provide methods to speed up tasks
that otherwise might take longer to complete while allowing
tasks that otherwise might complete faster to run in a more
power efficient regime. Notably, tasks that are running slow
may be sped up by being given additional resources. The
resources may include additional electrical power provided
to processing cores. Such an approach may use metrics of
task completion. In embodiments, the metrics may be pro-
vided by providing progress meters as annotations to parallel
computational regions that indicate a fraction of work
between synchronization points a particular thread has per-
formed.

In addition, load balancing may be provided in cases
when computational work may not commonly be evenly
balanced between parallel tasks and subtasks (threads). Such
cases may arise when available computational resources
may not divide evenly, or the problem might have some
affinity to powers of two or to perfect cubes, but a number
of cores may be arbitrary, etc. For irregular problems
(graphs, adaptive grids), optimal work balancing may be
difficult, and the physical resources at hand may not be
evenly divisible by the tasks at hand. Embodiments may
provide dynamic balancing among the tasks and threads.

The progress of each task may be expressed in units that
are specific to particular applications. For example, in loop-
based regions of computations, e.g., as is depicted in FIG. 4,
discussed above, which may generally be in HPC applica-
tions, progress may be expressed as a fraction of loop
iterations performed between synchronizations. A practical
advantage of using workload-specific metrics for tracking
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application progress may include objectively representing
completed work independent of code generation or run time
conditions.

Using a system-observable metric, such as a count of
instructions and/or specific operations, as a proxy for appli-
cation progress may need to account for a compiler that
generates two or more versions of the same code region
(vector and scalar, parallel and serial) with one of the
versions being picked dynamically at run time based on
some condition. Different run time choices may distort
application progress monitoring when based on instruction
or operation counts. Using workload-specific measures of
progress may provide more global consistency across mul-
tiple nodes.

In some embodiments, a run-time monitor program may
be used to track progress of parallel tasks and identify which
tasks are falling behind the slowest value across all tasks in
a group. The run-time monitor may then apply additional
resource to the lagging tasks to equalize task progress. The
additional resources may include an increased power budget
for a particular task that may allow corresponding CPU
cores to run at higher frequencies, therefore speeding up the
progress. In a case of applications parallelized at multiple
levels, such as hybrid Message Passing interface (MPI)/
Open Multi-Processing (OpenMP) applications, the monitor
program may dynamically increase a number of OpenMP
threads that are used in a slow running MPI rank. Similarly,
the tasks whose progress exceeds that of the rest of tasks in
parallel workload may be slowed down by reducing their
power allocation and/or an amount of other resources, such
as CPU cores, that they use, relatively improving the effi-
ciency of the run without impacting the run time or perfor-
mance.

In situations where processor speeds are effectively uni-
form within a given processor type, individual processors
may be allocated different amounts of power as a default,
with the amount of power allocated being less than what
may be used to power the processors at its full speed. For
example, two processors that may be nearly identical may
tasked with work that may entail the use of different amounts
of power. Two processors may require different voltages to
achieve correct operation at a given speed, and the power
may be enough for one processor to achieve the voltage and
not the other processor. Embodiments may be used with
such processors to further vary performance in ways that
relatively improves the speed of such processors and/or
efficiency in parallel processing applications.

Embodiments presented herein may be used both in
customer code and in vendor-supplied libraries that may be
used across multiple applications. In cases when it may be
desired to annotate an entire body of code with progress
meters, a partial application of this technique to most
frequently used regions of the code may still produce
beneficial results.

To the extent various operations or functions are
described herein, they may be described or defined as
hardware circuitry, software code, instructions, configura-
tion, and/or data. The content can be embodied in hardware
logic, or as directly executable software (“object” or
“executable” form), source code, high level shader code
designed for execution on a graphics engine, or low level
assembly language code in an instruction set for a specific
processor or graphics core. The software content of the
embodiments described herein can be provided via an article
of manufacture with the content stored thereon, or via a
method of operating a communication interface to send data
via the communication interface.
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A non-transitory machine readable storage medium can
cause a machine to perform the functions or operations
described, and includes any mechanism that stores informa-
tion in a form accessible by a machine (e.g., computing
device, electronic system, etc.), such as recordable/non-
recordable media (e.g., read only memory (ROM), random
access memory (RAM), magnetic disk storage media, opti-
cal storage media, flash memory devices, etc.). A commu-
nication interface includes any mechanism that interfaces to
any of a hardwired, wireless, optical, etc., medium to
communicate to another device, such as a memory bus
interface, a processor bus interface, an Internet connection,
a disk controller, etc. The communication interface may be
configured by providing configuration parameters or send-
ing signals to prepare the communication interface to pro-
vide a data signal describing the software content. The
communication interface can be accessed via one or more
commands or signals sent to the communication interface.

Various components described can be a means for per-
forming the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry,
etc. Besides what may be described herein, various modi-
fications can be made to the disclosed embodiments and
implementations of the invention without departing from
their scope. Therefore, the illustrations and examples herein
should be construed in an illustrative, and not a restrictive
sense. The scope of the invention should be measured solely
by reference to the claims that follow.

ADDITIONAL NOTES AND EXAMPLES

Example 1 may include a method of controlling a com-
putational resource, comprising globally synchronizing a
plurality of tasks across a plurality of computational
resources, computing an amount of work to complete at least
one task of the plurality of tasks, processing the plurality of
tasks in parallel to accomplish work corresponding to each
task of the plurality of tasks, repeatedly computing a work
fraction that corresponds to one or more of a fraction of
work completed or work remaining to be completed with
respect to the amount of work to complete the at least one
task of the plurality of task, and modifying a characteristic
of at least one computational resource of the plurality of
computational resources based on the work fraction.

Example 2 may include the method of Example 1,
wherein the plurality of computational resources includes a
plurality of cores, and wherein a frequency of at least one
core of the plurality of cores is varied based on the work
fraction.

Example 3 may include the method of any one of
Examples 1 to 2, wherein the plurality of computational
resources includes a plurality of processors, and wherein a
frequency of at least one core of the plurality of processors
is varied based on the work fraction.

Example 4 may include the method of any one of
Examples 1 to 3, wherein the plurality of computational
resources includes a plurality of nodes, and wherein at least
two nodes of the plurality nodes are to process parallel code.

Example 5 may include the method of any one of
Examples 1 to 4, wherein the plurality of tasks includes a
plurality of threads, and wherein the plurality of computa-
tional resources includes a plurality of cores.
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Example 6 may include the method of any one of
Examples 1 to 5, further including receiving an indication of
the work fraction at a runtime monitor.

Example 7 may include the method of any one of
Examples 1 to 6, further including modifying one or more of
a number, a distribution, a speed, or a frequency of at least
one of the plurality of computational resources.

Example 8 may include the method of any one of
Examples 1 to 7, wherein the characteristic includes a speed,
and wherein the speed of at least one computational resource
of the plurality of computational resources is modified by
changing an amount of electrical power provided to the at
least one computational resource.

Example 9 may include the method of any one of
Examples 1 to 8, wherein the plurality of computational
resources includes one or more of a core, a processor, a
multi-core processor, a node, a cabinet, a cluster, a row, or
a grid.

Example 10 may include the method of any one of
Examples 1 to 9, wherein the plurality of computational
resources includes a first computational resource, at least
one set of second computational resources, wherein each of
said second computational resources has a performance
measure, wherein a minimum of performance measures of
the second computational resources is used as a performance
measure of the set of second computational resources, and
wherein the set of second computational resources is a
subset of the first computational resource, and wherein the
performance of the first computational resource is the per-
formance measure of the set of second computational
resources.

Example 11 may include the method of any one of
Examples 1 to 10, further including reporting the work
fraction by one or more of an application or an Application
Programming Interface (API).

Example 12 may include the method of any one of
Examples 1 to 11, wherein at least a portion of the plurality
of computational resources are in communication with one
another.

Example 13 may include the method of any one of
Examples 1 to 12, wherein the plurality of computational
resources includes a plurality of groups of cores, and
wherein the method further includes measuring an operating
characteristic of at least one group of the plurality of groups
of cores, and modifying a speed of at least one of the groups
of cores based on the measurement.

Example 14 may include the method of any one of
Examples 1 to 13, wherein the operating characteristic is
speed, and wherein the method further includes increasing a
speed of a first group of cores by increasing an amount of
power supplied to the first group of cores, and decreasing a
speed of a second group of cores by decreasing the amount
of power supplied to the second group of cores.

Example 15 may include the method of any one of
Examples 1 to 14, further including synchronizing the
plurality of tasks at a barrier.

Example 16 may include the method of any one of
Examples 1 to 15, wherein each task of the plurality of tasks
includes a waiting time at the barrier, and wherein the
method further includes repeatedly modifying the charac-
teristic to reduce the waiting time for at least one task.

Example 17 may include the method of any one of
Examples 1 to 16, wherein the groups of cores are nodes,
and wherein the method further includes calculating a skew
of a plurality of measurements of an operating characteristic
for a plurality of nodes, and modifying a speed of at least one
node based on the skew.
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Example 18 may include an apparatus to process tasks,
comprising a plurality of computational resources to process
a plurality of tasks in parallel, wherein the plurality of tasks
are to be globally synchronized across the plurality of
computational resources, progress meter logic, implemented
at least partly in fixed functionality hardware, to compute an
amount of work to complete at least one task of the plurality
of tasks, and repeatedly compute a work fraction that is to
correspond to one or more of a fraction of work completed
or work remaining to be completed with respect to the
amount of work to complete the at least one task, and
performance balancer logic, implemented at least partly in
fixed functionality hardware, to modify a characteristic of at
least one computational resource of the plurality of compu-
tational resources based on the work fraction.

Example 19 may include the apparatus of Example 18,
wherein the plurality of computational resources is to
include a plurality of cores, and wherein the performance
balancer logic is to vary a frequency of at least one core of
the plurality of cores based on the work function.

Example 20 may include the apparatus of any one of
Examples 18 to 19, further including runtime monitor logic,
implemented at least partly in fixed functionality hardware,
to receive information from the progress meter logic indica-
tive of the work fraction.

Example 21 may include the apparatus of any one of
Examples 18 to 20, wherein the performance balancer logic
is to vary a speed of at least one of the plurality of
computational resources by varying an amount of power
supplied to the at least one of the plurality of computational
resources.

Example 22 may include the apparatus of any one of
Examples 18 to 21, wherein the performance balancer logic
is to vary a speed of at least two of the plurality of
computational resources by steering power from a relatively
faster one of the plurality of computational resources toward
a relatively slower one of the plurality of computational
resources.

Example 23 may include the apparatus of any one of
Examples 18 to 22, wherein the computational resources are
to include a plurality of cores, and wherein performance
balancer logic is to vary a frequency of at least one of the
plurality of cores by varying an amount of power provided
to at least one of the cores.

Example 24 may include the apparatus of any one of
Examples 18 to 23, wherein the plurality of computational
resources are to include one or more of a core, a processor,
a multi-core processor, a node, a cabinet, a cluster, a row, or
a grid, and wherein at least a portion of the plurality of
computational resources are to have a communications
channel therebetween.

Example 25 may include the apparatus of any one of
Examples 18 to 24, further including a plurality of nodes,
and skew calculator logic to compute a skew of a plurality
of measurements taken from the plurality of nodes, wherein
the performance balancer logic is to vary a speed of at least
one of the nodes based on the skew.

Example 26 may include the apparatus of any one of
Examples 18 to 25, wherein the performance balancer logic
is to modify one or more of a number, a distribution, a speed,
or a frequency of at least one of the plurality of computa-
tional resources.

Example 27 may include at least one computer readable
storage medium comprising one or more instructions that
when executed on a computing device cause the computing
device to globally synchronize a plurality of tasks across a
plurality of computational resources, compute an amount of

15

20

25

30

40

45

16

work to complete at least one task of the plurality of tasks,
repeatedly compute a work fraction that corresponds to one
or more of a fraction of work completed or work remaining
to be completed with respect to the amount of work to
complete the at least one task of the plurality of tasks, and
modify a characteristic of at least one computational
resource of the plurality of computational resources based
on the work fraction.

Example 28 may include the at least one computer
readable storage medium of Example 27, wherein the plu-
rality of computational resources is to include a plurality of
cores, and wherein the instructions, when executed on a
computing device, cause a performance balancer to vary a
frequency of at least one of the plurality of cores.

Example 29 may include the at least one computer
readable storage medium of any one of Examples 27 to 28,
wherein the instructions, when executed on a computing
device, cause the computing device to compute the work
fraction, and receive information from the progress meter
indicative of the work fraction.

Example 30 may include the at least one computer
readable storage medium of any one of Examples 27 to 29,
wherein the instructions, when executed, cause the comput-
ing device to vary a characteristic of operation of at least one
computational resource of the plurality of computational
resources.

Example 31 may include the at least one computer
readable storage medium of any one of Examples 27 to 30,
wherein the instructions, when executed, cause the comput-
ing device to vary an amount of power provided to at least
one of the plurality of cores.

Example 32 may include the at least one computer
readable storage medium of any one of Examples 27 to 31,
wherein the instructions, when executed, cause the comput-
ing device to allow the plurality of tasks to synchronize at a
barrier.

Example 33 may include the at least one computer
readable storage medium of any one of Examples 27 to 32,
wherein each task of the plurality of tasks includes a waiting
time at the barrier, and wherein the instructions, when
executed, cause the computing device to repeatedly modify
the characteristic to reduce a waiting time for at least one
task.

Example 34 may include an apparatus for controlling
computational resources, comprising means for globally
synchronizing a plurality of tasks across a plurality of
computational resources, means for computing an amount of
work to complete at least one task of the plurality of tasks,
means for processing the plurality of tasks in parallel to
accomplish work corresponding to each task of the plurality
of tasks, means for repeatedly computing a work fraction
that corresponds to one or more of a fraction of work
completed or work remaining to be completed with respect
to the amount of work to complete the at least one task of the
plurality of tasks, and means for modifying a characteristic
of at least one computational resource of the plurality of
computational resources based on the work fraction.

Example 35 may include the apparatus of Example 34,
wherein the plurality of computational resources includes a
plurality of cores, and wherein a frequency of at least one
core of the plurality of cores is varied based on the work
fraction.

Example 36 may include the apparatus of any one of
Examples 34 to 35, wherein the plurality of computational
resources includes a plurality of processors, and wherein a
frequency of at least one core of the plurality of processors
is varied based on the work fraction.
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Example 37 may include the apparatus of any one of
Examples 34 to 36, wherein the plurality of computational
resources includes a plurality of nodes, and wherein at least
two nodes of the plurality nodes process parallel code.

Example 38 may include the apparatus of any one of
Examples 34 to 37, wherein the plurality of tasks includes a
plurality of threads, and wherein the plurality of computa-
tional resources includes a plurality of cores.

Example 39 may include the apparatus of any one of
Examples 34 to 38, further including means for receiving an
indication of the work fraction at a runtime monitor.

Example 40 may include the apparatus of any one of
Examples 34 to 39, further including means for varying one
or more of a number, a distribution, a speed, or a frequency
of at least one of the plurality of computational resources.

Example 41 may include the apparatus of any one of
Examples 34 to 40, wherein the characteristic includes a
speed, and wherein the speed of at least one computational
resource of the plurality of computational resources is varied
by changing an amount of electrical power provided to the
at least one computational resource.

Example 42 may include the apparatus of any one of
Examples 34 to 41, wherein the plurality of computational
resources include one or more of a core, a processor, a
multi-core processor, a node, a cabinet, a cluster, a row, or
a grid.

Example 43 may include the apparatus of any one of
Examples 34 to 42, wherein the plurality of computational
resources are in communication with one another.

Example 44 may include the apparatus of any one of
Examples 34 to 43, wherein the plurality of computational
resources includes groups of cores, and wherein the appa-
ratus further includes means for determining a measurement
of an operating characteristic of at least one group of the
groups of cores, and means for modifying a speed of at least
one group of the groups of cores based on the measurement.

Example 45 may include the apparatus of any one of
Examples 34 to 44, wherein the groups of cores are nodes,
and wherein the apparatus further includes means for cal-
culating a skew of a plurality of measurements of an
operating characteristic for a plurality of nodes, and means
for modifying a speed of at least one node based on the skew.

Example 46 may include an apparatus for balancing a
plurality of computational resources, comprising a plurality
of nodes, each node having a progress meter capable of
determining progress information including a total amount
of' work to be done to complete a task and an amount of work
that has been done to complete the task, and a performance
balancer that uses the progress information to control the
behavior of the plurality of nodes.

Example 47 may include the apparatus Example 46,
further including a run-time monitor to obtain the progress
information and forward the progress information to the
performance balancer.

Example 48 may include the apparatus of any one of
Examples 46 to 47, wherein the run-time monitor obtains the
progress information via one or more of an explicit function
call or a query by the run-time monitor.

Example 49 may include the apparatus of any one of
Examples 46 to 48, wherein the run-time monitor includes
an application programming interface (API).

Example 50 may include the apparatus of any one of
Examples 46 to 49, wherein the performance balancer is to
balance the plurality of nodes by speeding up a first portion
of the plurality of nodes and by slowing down a second
portion of the plurality of nodes.
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Example 51 may include the apparatus of any one of
Examples 46 to 50, wherein the performance balancer is to
increase an amount of electrical power supplied to a portion
of the plurality of nodes to speed up the portion of the
plurality of nodes.

Example 52 may include the apparatus of any one of
Examples 46 to 51, wherein the performance balancer is to
reduce an amount of electrical power supplied to a portion
of the plurality of nodes to slow down the portion of the
plurality of nodes.

Example 53 may include a method of controlling com-
putational resources, comprising globally synchronizing a
plurality of threads across a plurality of computational
resources, making one or more determinations of an extent
to which a thread has been processed, and computing
amounts of work to complete each thread of the plurality of
threads, wherein the one or more determinations are used to
control at least one computational resource of the plurality
of computational resources.

Example 54 may include the method of Example 53,
wherein the computational resources include cores.

Example 55 may include the method of any one of
Examples 53 to 54, wherein the computational resources
include nodes.

Example 56 may include the
Examples 53 to 55, wherein the
include cabinets.

Example 57 may include the
Examples 53 to 56, wherein the
include clusters.

Example 58 may include the
Examples 53 to 57, wherein the
include grids.

Example 59 may include a method of enhancing operating
efficiency of a plurality of computational resources, com-
prising globally synchronizing a plurality of threads across
a plurality of cores, computing an amount of work to
complete each thread of the plurality of threads, processing
the plurality of threads in parallel to accomplish work
corresponding to each thread of the plurality of threads,
repeatedly computing a work fraction that corresponds to a
fraction of work completed or remaining to be completed
with respect to the amount of work to complete each thread
of the plurality of threads, and modifying a core frequency
of at least one core of the plurality of cores based on the
work fraction.

Example 60 may include the method of Example 59,
wherein the cores are grouped into nodes.

Example 61 may include the method of any one of
Examples 59 to 60, wherein the nodes are grouped into
cabinets.

Thus, techniques and structures described herein may
reduce power consumption in a graphics processor, and are
applicable to other types of processors as well. As a result,
a graphics processor and/or other types of processors in
which these techniques and structures are used may provide
relatively higher energy efficiency.

Various embodiments and various modules may be imple-
mented using hardware elements, software elements, or a
combination of both. Examples of hardware elements may
include processors, microprocessors, circuits, circuit ele-
ments (e.g., transistors, resistors, capacitors, inductors, and
so forth), integrated circuits, application specific integrated
circuits (ASIC), programmable logic devices (PLD), digital
signal processors (DSP), field programmable gate array
(FPGA), logic gates, registers, semiconductor device, chips,
microchips, chipsets, and so forth. Examples of software

method of any one of
computational resources

method of any one of
computational resources

method of any one of
computational resources
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may include software components, programs, applications,
computer programs, application programs, system pro-
grams, machine programs, operating system software,
middleware, firmware, software modules, routines, subrou-
tines, functions, methods, procedures, software interfaces,
application program interfaces (API), instruction sets, com-
puting code, computer code, code segments, computer code
segments, words, values, symbols, or any combination
thereof. Determining whether an embodiment may be imple-
mented using hardware elements and/or software elements
may vary in accordance with any number of factors, such as
desired computational rate, power levels, heat tolerances,
processing cycle budget, input data rates, output data rates,
memory resources, data bus speeds and other design or
performance constraints.

Example sizes/models/values/ranges may have been
given, although embodiments are not limited to the same. As
manufacturing techniques mature over time, it may be
expected that devices of smaller size and smaller tactile
element size could be manufactured. In addition, well
known electrical or fluidic components may or may not be
shown within the figures, for simplicity of illustration and
discussion, and so as not to obscure certain aspects of the
embodiments. Further, arrangements may be shown in block
diagram form in order to avoid obscuring embodiments, and
also in view of the fact that specifics with respect to
implementation of such block diagram arrangements are
highly dependent upon the platform within which the
embodiment may be to be implemented, i.e., such specifics
should be well within purview of one skilled in the art.
Where specific details (e.g., circuits) are set forth in order to
describe example embodiments, it should be apparent to one
skilled in the art that embodiments may be practiced with-
out, or with variation of, these specific details. The descrip-
tion may be thus to be regarded as illustrative instead of
limiting.

The term “coupled” may be used herein to refer to any
type of relationship, direct or indirect, between the compo-
nents in question, and may apply to electrical, mechanical,
fluid, optical, electromagnetic, electromechanical or other
connections. In addition, the terms “first”, “second”, etc.
may be used herein only to facilitate discussion, and carry no
particular temporal or chronological significance unless oth-
erwise indicated. Additionally, it may be understood that the
indefinite articles “a” or “an” carries the meaning of “one or
more” or “at least one”. As used in this application and in the
claims, a list of items joined by the term “one or more of”
may mean any combination of the listed terms. For example,
the phrases “one or more of A, B or C” may mean A; B; C;
Aand B;Aand C; B and C; or A, B and C.

Those skilled in the art will appreciate from the foregoing
description that the broad techniques of the embodiments
can be implemented in a variety of forms. Therefore, while
the embodiments have been described in connection with
particular examples thereof, the true scope of the embodi-
ments should not be so limited since other modifications will
become apparent to the skilled practitioner upon a study of
the drawings, specification, and following claims.

We claim:
1. A method of controlling a computational resource,
comprising:
globally synchronizing a plurality of tasks across a plu-
rality of computational resources;
computing an amount of work to complete at least one
task of the plurality of tasks;
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processing the plurality of tasks in parallel to accomplish
work corresponding to each task of the plurality of
tasks;
repeatedly computing a work fraction that corresponds to
one or more of a fraction of work completed or work
remaining to be completed with respect to the amount
of work to complete the at least one task of the plurality
of tasks;
calculating a skew of a plurality of work fractions taken
from the plurality of computational resources, wherein
the skew is a variance of the work fractions divided by
a mean of the work fractions; and
modifying a characteristic of at least one computational
resource of the plurality of computational resources
based on the work fraction and the skew.
2. The method of claim 1, wherein the plurality of
computational resources includes a plurality of cores, and
wherein a frequency of at least one core of the plurality of
cores is varied based on the work fraction.
3. The method of claim 1, wherein the plurality of
computational resources includes one or more of a core, a
processor, a multi-core processor, a node, a cabinet, a
cluster, a row, or a grid, and wherein at least a portion of the
plurality of computational resources are in communication
with one another.
4. The method of claim 1, wherein the plurality of tasks
includes a plurality of threads, and wherein the plurality of
computational resources includes a plurality of cores.
5. The method of claim 1, further including: reporting the
work fraction by one or more of an application or an
Application Programing Interface (API); and receiving an
indication of the work fraction at a runtime monitor.
6. The method of claim 1, further including modifying one
or more of a number, a distribution, a speed, or a frequency
of at least one of the plurality of computational resources.
7. The method of claim 1, wherein the characteristic
includes a speed, and wherein the speed of at least one
computational resource of the plurality of computational
resources is modified by changing an amount of electrical
power provided to the at least one computation resource.
8. The method of claim 1, wherein the plurality of
computational resources incudes a plurality of nodes.
9. The method of claim 1, further including synchronizing
the plurality of tasks at a barrier, wherein each task of the
plurality of tasks includes a waiting time at the barrier, and
wherein the method further includes repeatedly modifying
the characteristic to reduce the waiting time for the at least
one task.
10. An apparatus to process tasks, comprising:
a plurality of computational resources to process a plu-
rality of tasks in parallel, wherein the plurality of tasks
are to be globally synchronized across the plurality of
computational resources;
progress meter logic, implemented at least partly in fixed
functionality hardware, to:
compute an amount of work to complete at least one
task of the plurality of tasks; and

repeatedly compute a work fraction that is to corre-
spond to one or more of a fraction of work completed
or work remaining to be completed with respect to
the amount of work to complete the at least one task;

skew calculator logic to compute a skew of a plurality
of work fractions taken from the plurality of com-
putational resources, wherein the skew is a variance
of the work fractions divided by a mean of the work
fractions; and
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performance balancer logic, implemented at least partly
in fixed functionality hardware, to modify a charac-
teristic of at least one computational resource of the
plurality of computational resources based on the
work fraction and the skew.

11. The apparatus of claim 10, wherein the plurality of
computational resources is to include a plurality of cores,
and wherein the performance balancer logic is to vary a
frequency of at least one core of the plurality of cores based
on the work fraction.

12. The apparatus of claim 10, wherein the performance
balancer logic is to vary a speed of at least one of the
plurality of computational resources by varying an amount
of power supplied to the at least one of the plurality of
computational resources.

13. The apparatus of claim 10, wherein the performance
balancer logic is to vary a speed of at least two of the
plurality of computational resources by steering power from
a relatively faster one of the plurality of computational
resources toward a relatively slower one of the plurality of
computational resources.

14. The apparatus of claim 10, wherein the computational
resources are to include a plurality of cores, and wherein the
performance balancer logic is to vary a speed of at least one
of the plurality of cores by varying an amount of power
provided to the at least one of the plurality of cores.

15. The apparatus of claim 10, further including runtime
monitor logic, implemented at least partly in fixed function-
ality hardware, to receive information from the progress
meter logic that is to be indicative of the work fraction.

16. The apparatus of claim 10, wherein the plurality of
computational resources are to include one or more of a
core, a processor, a multi-core processor, a node, a cabinet,
a cluster, a row, or a grid, and wherein at least a portion of
the plurality of computational resources are to have a
communications channel there between.

17. The apparatus of claim 10, wherein the plurality of
computational resources incudes a plurality of nodes.

18. The apparatus of claim 10, wherein the performance
balancer logic is to modify one or more of a number, a
distribution, a speed, or a frequency of at least one of the
plurality of computational resources.

19. At least one non-transitory computer readable storage
medium comprising one or more instructions that when
executed on a computing device cause the computing device
to:

globally synchronize a plurality of tasks across a plurality

of computational resources;
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compute an amount of work to complete at least one task

of the plurality of tasks;

process the plurality of tasks in parallel to accomplish

work corresponding to each task of the plurality of
tasks;
repeatedly compute a work fraction that corresponds to
one or more of a fraction of work completed or work
remaining to be completed with respect to the amount
of work to complete the at least one task of the plurality
of tasks;
calculate a skew of a plurality of work fractions taken
from the plurality of computational resources, wherein
the skew is a variance of the work fractions divided by
a mean of the work fractions; and

modify a characteristic of at least one computational
resource of the plurality of computational resources
based on the work fraction and the skew.

20. The at least one non-transitory computer readable
storage medium of claim 19, wherein the plurality of com-
putational resources is to include a plurality of cores, and
wherein the instructions, when executed on a computing
device, cause the computing device to modity a frequency of
at least one of the plurality of cores.

21. The at least one non-transitory computer readable
storage medium of claim 19, wherein the instructions, when
executed, cause the computing device to: compute the work
fraction; and

receive information from the progress meter indicative of

the work fraction.

22. The at least one non-transitory computer readable
storage medium of claim 19, wherein the instructions, when
executed, cause the computing device to vary a character-
istic of operation of at least one computational resource of
the plurality of computational resources.

23. The at least one non-transitory computer readable
storage medium of claim 19, wherein the instructions, when
executed, cause the computing device to vary an amount of
power provided to at least one core of the plurality of cores.

24. The at least one non-transitory computer readable
storage medium of claim 19, wherein the instructions, when
executed, cause the computing device to allow the plurality
of tasks to synchronize at a barrier.

25. The at least one non-transitory computer readable
storage medium of claim 19, wherein each task of the
plurality of tasks includes a waiting time at the barrier, and
wherein the instructions, when executed, cause the comput-
ing device to repeatedly modify the characteristic to reduce
a waiting time for at least one task.

#* #* #* #* #*



